Introduction
Osteomyelitis is a bacterial infection of the bone. In paediatric osteomyelitis, commonest mechanism is haematogenous inoculation of the bone during an episode of bacteraemia. Osteomyelitis can result from penetrative trauma or spread from a contiguous site of infection.

Case report
A five year old New Zealand European boy was referred for further evaluation to the Children’s Emergency Department (CED), Starship Children’s Health following an abnormal radiograph of the right femur (Figure 1).

He had a history of intermittent right thigh pain and limp for 4 weeks which resolved 2 weeks ago. There was no history of trauma or fever. General Practitioner had seen the child and arranged an X-ray of right femur and hip joint. X-ray showed a periosteal reaction in the proximal femoral shaft without any evidence of fracture (arrow in Figure 1).

On presentation to CED, his temperature was 36.5°C. His pulse rate was 80/min, respiratory rate 24/min and oxygen saturation 97% on air. His gait was normal. His lower limbs were not tender and all joint movements were normal. The rest of the physical examination was unremarkable. The differential diagnoses were undisplaced fracture of femur, osteomyelitis and malignancies such as bone tumours and leukaemia.

Full blood count showed a haemoglobin level of 126 g/L, white cell count 8.78 x10⁹/L with neutrophils 2.88 x10⁹/L and lymphocytes 4.76 x10⁹/L, platelet count 277 x10⁹/L. C-reactive protein (CRP) was <0.6 mg/L and erythrocyte sedimentation rate (ESR) was 6 mm/1⁰ hour. Serum electrolytes, calcium, phosphate, albumin and liver function tests were normal. Lactate dehydrogenase was 276 U/L which was elevated (Reference range: 120 -250 U/L). In the background of the normal physical examination and unremarkable full blood count and inflammatory markers, it was decided to perform a magnetic resonance skeletal survey. It showed nonspecific intramedullary signal abnormality with contrast enhancement and smooth periosteal new bone formation in proximal right femoral diaphysis.

Bone biopsy was carried out from the right proximal femur. Gelatinous material was noted in the medullary cavity. Histology showed evidence of chronic osteomyelitis. Peripheral blood culture, tissue culture and bone marrow culture from the
proximal femur did not yield any growth. As the
cultures were negative, it was decided to observe the
child without antibiotics. He had an undisplaced
pathological fracture of the proximal right femur 2
case. Repeat radiograph in 2 weeks showed callus
formation. Child was asymptomatic when reviewed
3 months later.

Discussion
A study in New Zealand estimated the incidence of
osteomyelitis in New Zealand European children to
be 111 per million and Maori and Polynesian
children to be 428 per million2. Osteomyelitis is
classified according to the duration between
diagnosis and onset of symptoms into three groups:
acute (up to 2 weeks), subacute (2 weeks to 3
months) and chronic (>3 months)3. Our patient falls
into the subacute category.

Sensitivity of ESR and CRP in bacterial osteo-
articular infection on admission was 94% and 95%
respectively and combination of ESR and CRP gave
a sensitivity of 98%4. Radiographs have low
specificity and sensitivity for osteomyelitis5. Magnetic resonance imaging (MRI) has high
sensitivity (82%–100%), and specificity (75%–
99%) in diagnosis of osteomyelitis3. MRI, ESR and
CRP were not helpful in diagnosis of osteomyelitis
in our patient. Bone biopsy was carried out as history
and initial investigations did not lead to a diagnosis.

There were dilemmas about diagnosis and
management in our patient. The dilemma about the
initial diagnosis resolved with the bone biopsy.
Resolved symptoms, normal inflammatory markers,
nonspecific MRI and no growth in cultures favoured
observation rather than antibiotics in our patient.

Acknowledgement
We thank the Departments of Radiology, Pathology
and Orthopaedics in Starship Children’s Health for
their contribution in managing this patient.

References

1. Zaoutis T, Localio AR, Leckerman K,
 Saddlemire S, Bertoch D, Keren R.
 Prolonged intravenous therapy versus early
 transition to oral antimicrobial therapy for
 acute osteomyelitis in children. Pediatrics
 https://doi.org/10.1542/peds.2008-0596
 PMid: 19171632 PMCid: PMC3774269

2. Rossaak M, Pitto RP. Osteomyelitis in
 Polynesian children. International
 https://doi.org/10.1007/s00264-004-0597-
 3 PMid: 15490163 PMCid: PMC3456946

3. Chiappini E, Mastrangelo G, Lazzari SA.
 Case of acute osteomyelitis: An update on
diagnosis and treatment. International
 Journal of Environmental Research and
 https://doi.org/10.3390/ijerph13060539
 PMid: 27240392 PMCid: PMC4923996

4. Pääkkönen M, Kallio MJ, Kallio PE,
Peltola H. Sensitivity of erythrocyte
 sedimentation rate and C-reactive protein
 in childhood bone and joint
 infections. Clinical Orthopaedics and
 https://doi.org/10.1007/s11999-009-0936-
 1 PMid: 19533263 PMCid: PMC2816763