COVID-19: A review of drugs and therapies for children

*Patel Zeeshan Jameel1, Amar M Taksande1

DOI: http://dx.doi.org/10.4038/sljch.v49i3.9136
(Key words: Paediatrics, COVID-19, coronavirus, chloroquine, azithromycin, vitamin supplementation, interferons)

Introduction
The World Health Organisation (WHO) has declared the disease as Corona Virus Disease (COVID-19) due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Coronavirus infection was restricted to animals but gained importance in medicine as it acted as the aetiological factor responsible for the SARS epidemic in 2002 in the Guangdong province of China1. WHO reported its spread to over 26 countries, causing infections in 8096 individuals and 774 deaths2. This group of viruses caused another outbreak in 2012 as Middle Eastern Respiratory Syndrome (MERS)3. Since December 2019, a strain of novel coronavirus has wreaked havoc in the Hubei province of China and has caused severe pneumonia4. On March 11, the WHO declared it a ‘pandemic’. More than 1.5 million cases of COVID 19 have been reported with a mortality of over 85,000 across 212 countries5. The largest study on children with COVID 19 to date includes an analysis of 2143 children documented from 16th of January, 2020 to 8th of February, 2020. This study showed that only 1 child had died while 5.9% were critical or had severe pneumonia, the majority having mild to moderate illness6. Although pneumonia remains the chief cause of death among the under 5 year age category, the features of COVID-19 pneumonia were relatively milder compared to pneumonia of other aetiologies and the prognosis was better with deaths being extremely rare6-8.

Clinical presentation in infants and children
Since the outbreak of the pandemic, 9 infants were reported to be positive till 6th February, 2020 in China with the youngest being 1 month old and the oldest being 11 months old9. In older children, clinical presentation varied from asymptomatic to symptoms of mild upper respiratory tract infection in the majority6, 22% manifesting with pneumonia, and some children having gastrointestinal symptoms such as abdominal pain, nausea, vomiting and diarrhoea10. The first paediatric case of severe pneumonia in China due to SARS-CoV2 requiring mechanical ventilation was reported by Chen F, et al11. Thus SARS-CoV2 can cause a severe form of pneumonia in the paediatric age group and there is a dire need for efficient management strategies. To date, no definitive treatment strategy has proven efficacious for SARS-CoV2 infection. Table 1 lists all possible management strategies in children.

Triage
A pre-defined, devoted area for triage of patients is essential for all children suspected of having COVID-19. Use of Personal Protective Equipment (PPE) is mandatory for the attending paediatrician. It must be ensured that the child and accompanying parents/relatives are using a 3-ply surgical mask12.

Respiratory support
Oxygen support is required in a child with oxygen saturation (SpO2) less than 90% and/or with signs of respiratory distress13. The British Paediatric Respiratory Society (BPRS) has advised that hypoxic children should initially receive low flow nasal cannula (LFNC) oxygen rather than high flow nasal cannula (HFNC) oxygen as HFNC is associated with an increased risk of aerosol spread14. HFNC may be the next step if the child continues to be hypoxic14. Improvement is indicated by reduced heart and respiratory rates by 10-20%, reduced fraction of inspired oxygen (FiO2) requirements to less than half and improved SpO213.

Both the European Society of Intensive Care Medicine and the American Association for Respiratory Care have advised against usage of non-invasive ventilation (NIV) in acute respiratory failure in H1N1 influenza as it is a high risk procedure which should be cautiously used due to the high probability of spread of infection13,15.
Bubble continuous positive airway pressure (Bubble CPAP) is an alternative procedure which may be used for newborns and children with hypoxia when both NIV and mechanical ventilation are not available13. Lung protective mechanical ventilation is a recommended strategy for treatment of acute hypoxic respiratory failure16.

Table 1: Management strategies of possible implication in paediatrics

- **Triage**
- **Respiratory support**
 - Low flow nasal cannula (LFNC)
 - High flow nasal cannula (HFNC) / Heated high flow nasal cannula (HHFNC)
 - Non-invasive ventilation (NIV)
 - Bubble continuous positive airway pressure (Bubble CPAP)
 - Mechanical ventilation (MV)
- **Nutritional supplementation**
 - Vitamin B complex
 - Vitamin C
 - Zinc
- **Immunotherapy**
 - Interferons
 - Convalescent plasma or intravenous immunoglobulin (IVIg)
- **CoV specific therapy**
 - CoV protease inhibitors like Cinanserin
 - Spike(S) protein ACE 2 Blockers like Griffithsin, ACE2 binding Ab or peptides
- **Chloroquine / Hydroxychloroquine (CQ/HCQ)**
- **Antiviral therapy**
 - Ribavirin
 - Lopinavir / Ritonavir
 - Remdesivir
- **Antibiotics**
 - Azithromycin
 - Teicoplanin
- **Anti-parasitic drugs**
 - Ivermectin

Nutritional supplementation

Riboflavin supplementation has been reported to effectively scale down the titres of MERS-CoV in the human plasma products17. Treatment with nicotinamide was able to significantly repress neutrophil infiltration into lungs during ventilator induced lung injury but had no effect on cytokine production or protein leakage and was also found to paradoxically lead to hypoxaemia18. Pyridoxine plays a vital role in antibody production and immune system regulation19. Thus, B complex vitamins are a valuable adjunct in COVID-19 therapy.

Five trials found preventive or therapeutic benefits of vitamin C against pneumonia with the overall quality of the studies being good20. Thus, Vitamin C supplementation is a potential therapy in the treatment of viral pneumonias. Because of this, a triple blinded randomised controlled trial (RCT) is being carried out by Peng et al21 evaluating the role of intravenous ascorbic acid for treatment of severe pneumonia due to COVID-19. Results of this trial are awaited.

Velthuis et al22 determined in their study that zinc and pyrithione when administered at low concentration inhibited the replication of SARS-CoV in Vero-E6 cells by RdRp template binding and inhibition of its elongation. Therefore, zinc supplementation may be a useful treatment for this novel coronavirus.

Immunotherapy

Interferons (IFNs) restrict virus replication before adaptive immune responses develop23. Ian Hall, a molecular medicine professor at Nottingham University stated, “The idea behind the trial is that by giving more of this molecule to the lung, it could help reduce the severity of infection with COVID 19, especially in those people who have reduced immune responses to the virus. If the trial shows that interferon beta is a useful treatment for COVID 19, it would provide a way to reduce the severity of disease and potentially reduce death rates”24. Ströher et al25 found that the SARS-CoV is inhibited in tissue culture by IFN-α2b at concentrations of ≥1000IU/ml. Another study concluded that early intervention with the use of exogenous IFNs only or along with direct antivirals prior to complete subversion of the host’s immune
response may provide a viable treatment option. In an observational cohort study comprising 36 children, an aerosolized form of interferon alpha was used for all patients with no adverse outcomes or mortality. A study by Chen et al. found that both leucocytic IFNa and IFNUNa were more active and ribavirin was determined to have highly synergistic action with either of the two IFNs. The study concluded that ribavirin combined with either IFN must be considered for SARS therapy.

On the basis of experience of using IFNa as well as clinical research in the treatment of bronchiolitis, viral pneumonia, acute upper respiratory infection and SARS in childhood, Shen et al. recommends the use of IFNs in the following dosages:

- **INFa nebulization:** INFa 200,000-400,000 IU/kg in 2ml sterile water, twice a day for 5-7 days.
- **INFa2b spray for high risk population** with close contact with suspected SARS-CoV2 infected patients or those in early phase with only upper respiratory tract symptoms. Use 1-2 sprays in each nostril with 8-10 sprays in oropharynx, 1-2 hourly, 8-10 sprays/day for 5-7 days (Dose of INFa2b per injection – 8000IU).

Convalescent plasma or immunoglobulins can be considered in SARS patients who continue to deteriorate in spite of treatment. Furthermore, numerous studies suggest that testing the efficacy of therapy with convalescent plasma or SARS specific hyper-immune immunoglobulin in the early phase of SARS could be rewarding. Hung et al. showed a substantial decrease in the relative risk of death in patients being treated with convalescent plasma during the H1N1 influenza A pandemic in 2009. The WHO recommended use of convalescent plasma from recovered patients as an empirical therapy in the 2014 Ebola outbreak. The meta-analysis by Mair-Jenkins et al. concluded that the use of convalescent plasma may decrease mortality and appears to be safe. However, it also concluded that this therapy should be studied with a well-designed clinical trial for therapy of CoV infections. Shen et al. treated 5 critically ill adults with COVID-19 and ARDS with convalescent therapy containing neutralizing antibody and results showed decreasing Sequential Organ Failure Assessment Score (SOFA) in all 5 of them, decreased oxygen demand and weaning of 3 adults from ventilator within 14 days with all 5 surviving the serious illness. Thus, literature shows that convalescent plasma from recovered patients is a management strategy with some potential at this time but it is yet to be tried in the paediatric population.

CoV specific therapy

CoV protease inhibitors

Cinanserin is a drug well-known for its antagonistic action on serotonin receptor. In the study by Chen et al., cinanserin inhibited the 3-chymotrypsin-like protease of SARS-CoV and also inhibited replication of SARS-CoV. In a study by Parks IY, et al., diaryleptanoids inhibited the papain-like protease of SARS-CoV.

Spire (S) protein ACE 2 blockers

Griffithsin, a lectin, binds to oligosaccharides present on the surface of some viral glycoproteins, including SARS-CoV spike glycoprotein and HIV glycoprotein 120. **ACE2** is a receptor for SARS-CoV virus and mediates its entry into the cell by binding with S protein. Blocking the binding of S protein to ACE2 is an important therapeutic option which could be used for treatment in the form of mAb. Sui et al. have developed an anti-S1 human monoclonal antibody 80R which neutralizes SARS-CoV infection with a strong nanomolar affinity and also efficiently inhibits formation of syncytia by receptor binding blockade. The data in this *in vitro* study also suggested that the monoclonal antibody may be further developed and tested in *in vivo* animal studies to determine its clinical utility as a potent inhibitor of viral entry for use in prophylaxis and treatment of SARS.

Chloroquine/Hydroxychloroquine (CQ/HCQ)

Wang et al. tested 5 FDA approved drugs *in vitro* to reduce the viral infection Vero E6 cells and found CQ to be effective against 2019-nCov (EC₅₀ – 6.90μM). Numerous trials have been started already evaluating the role of CQ in COVID-19 infection. Interim results of these trials may be available by April 2020. An expert consensus comprising multicentre collaboration group of the Department of Science and Technology of Guangdong province and Health Commission of Guangdong province have published a paper regarding the use of CQ phosphate. Although, there was no information on the methodology utilized to achieve this consensus but based on multiple *in vitro* studies and clinical experience which are yet

Intravenous immunoglobulins (IVIg) may be used in severe cases or critically ill patients but requires further validation. The recommended dose in children is 1g/kg/day for 2 days or 400mg/kg/day for 5 days. In a single centre observational study by Dan Sun et al., immunoglobulin therapy was administered to 4 patients with 2 children getting discharged while the other 2 were still in the intensive care unit at the time of publication of the study.
to be published, the panel recommends CQ supplementation for CQ or HCQ, Azithromycin and Ivermectin present the best available therapeutic agents for symptomatic children. However, a series of clinical trials are required at the earliest to evaluate their efficacy and safety in the paediatric population.

Anti-viral drugs

Ribavirin, Remdesivir, Galidesivir, Tenofovir and Sofosbuvir are potent drugs against SARS-CoV2 as they tightly bind to its RNA dependent RNA polymerase45. There is no consensus on the use of these drugs in children. Lopinavir (LPV) is a protease inhibitor of HIV-1 which is combined with Ritonavir (RTV) in order to increase its half-life. Combination of LPV/RTV has shown efficacy against the SARS-CoV in tissue cultures as well as in patients with estimated EC50 being 4 mcg/ml in foetal rhesus kidney-4 cells46. A randomized clinical trial in China, comparing the use of LPV/RTV to the prevailing care in 199 admitted COVID-19 patients, concluded that LPV/RTV did not significantly decrease the 28 day mortality or the time to clinical improvement and that this drug regimen was associated with more adverse events47.

Antibiotics

Teicoplanin, a glupcopeptide antibiotic usually used for treatment of bacterial infection, was found to be active against SARS-CoV in vitro48. A recent non-randomised clinical trial in France showed that hydroxychloroquine could reduce the viral load and also that addition of azithromycin had increased its efficiency significantly49. Azithromycin is thus a potential therapeutic agent which could be exploited further in paediatric clinical trials for COVID-19 pneumonia.

Anti-parasitic drugs

Ivermectin, FDA approved for parasitic infections, is an inhibitor of SARS-CoV2 in vitro and a single treatment can effect a 5000 fold reduction in virus at 48 hours in cell culture50. Thus, it merits further study for treating COVID-19 infection in children.

In conclusion, Anti-CoV drugs need to be further evaluated and studied for their mechanism of action, appropriate dosing regimen as per body surface area or body weight, and efficacy with special consideration being given for adverse reactions and possible drug interactions in children. Although COVID-19 has been relatively less severe in children, there is a dire need to come up with a definitive treatment protocol for children.

Keeping this in mind, this article reviews all possible beneficial therapeutic agents in the paediatric population. Ascorbic acid and zinc supplementation may be useful as preventive measures as well as in asymptomatic patients. Interferons, SARS- CoV-2 specific antivirals, HCQ/CQ, Azithromycin and Ivermectin present the best available therapeutic agents for symptomatic children. However, a series of clinical trials are required at the earliest to evaluate their efficacy and safety in the paediatric population.

References

213

22. te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn2+ inhibits Coronavirus and Arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. *PLOS Pathogens* 2010; 6(11):e1001176. https://doi.org/10.1371/journal.ppat.1001176 PMid: 21079686 PMCid: PMC2973827

31. WHO. Use of convalescent whole blood or plasma collected from patients recovered from Ebola virus disease. September 2014. WHO/HIS/SDS/2014.8

PMid: 32205204 PMCID: PMC7102549

PMid: 32251768 PMCID: PMC7129059