Picture Story

Neonate with chylothorax following bilateral pneumothoraces

Vindya Subasinghe¹, Jeevanee Hettiarachchi¹, Buddhima Jayasinghe¹

Sri Lanka Journal of Child Health, 2019; 48(1): 90-91

DOI: http://dx.doi.org/10.4038/sljch.v48i1.8664
(Key words: Chylothorax, thoracic duct, thoracostomy drainage)

Introduction

Chylothorax is an uncommon cause of pleural effusion in children¹. It can result in significant respiratory morbidity, malnutrition and immunodeficiency². Among neonates with significant pleural effusion, chylothorax remains the commonest cause and it can be congenital or acquired¹. Out of the acquired causes, in the majority the aetiology remains unknown². First line of treatment of chylothorax is the thoracostomy drainage and respiratory support, but there are other modalities like octreotide³. If drainage is required for several weeks, pleurodesis with OK-432 (Picibanil), erythromycin, or povidone-iodine may be helpful⁵. Surgical management includes ligation of the thoracic duct⁶.

Case report

A non-syndromic baby boy was born to healthy non consanguineous parents as the third child of the family at 29+2 weeks of gestation by emergency lower segment caesarean section due to preterm pre-labour rupture of membranes and thin meconium stained liquor. Baby was admitted to the neonatal intensive care unit for respiratory support. Baby received two doses of surfactant and while on ventilator he developed bilateral pneumothoraces on day 2 of life (Figure 1).

This was managed with chest drains. Left sided pneumothorax completely settled by day 5. Unexpectedly, on the same day, milk like drain was noted from the right sided chest drain (Figure 2).

This was confirmed as chyle biochemically (Table 1).

¹Castle Street Hospital for Women, Colombo, Sri Lanka
Correspondence: vindimdm@yahoo.com

(Received on 10 December 2017: Accepted after revision on 19 January 2018)
The authors declare that there are no conflicts of interest.
Personal funding was used for the project.
Open Access Article published under the Creative Commons Attribution CC-BY License
Table 1

<table>
<thead>
<tr>
<th>Intercostal tube drain full report and lipid profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
</tr>
<tr>
<td>Appearance</td>
</tr>
<tr>
<td>Protein</td>
</tr>
<tr>
<td>RBC</td>
</tr>
<tr>
<td>WBC</td>
</tr>
<tr>
<td>Total cholesterol</td>
</tr>
<tr>
<td>Triglycerides</td>
</tr>
</tbody>
</table>

Lipid profile done after centrifugation and removal of top layer because turbidity may cause errors.

However, by day 7 right sided chylothorax resolved (Figure 3).

Discussion

Neonatal chylothorax is not a frequently observed condition, though it is the commonest form of pleural effusion among neonates\(^1\). Acquired chylothorax may be due to trauma, rise in central venous pressure, tumours or other cause\(^4\). In this case the aetiology is probably traumatic during chest drain insertion. Since this a right sided chylothorax the damage to the thoracic duct must have happened below the T5 level. If it was above that it has to be bilateral chylothorax. Chylothorax was confirmed by measuring the triglyceride level in the drain. In managing a child with chylothorax drainage of the effusion is essential\(^3\). Other modalities in the management are dietary modifications and the other medical therapies like somatostatin and octreotide to diminish chyle flow so that the thoracic duct could heal\(^5\). Early surgical intervention would be warranted if medical management fails or complications develop from the chylothorax\(^1\). The site of rupture of the thoracic duct can be identified by lymphangiography\(^3\). Prognosis depends on the aetiology, response to therapy and complications\(^1\).

References

